일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 추정
- 글쓰기
- 확률
- 회귀분석
- css
- version 2
- 반복없음
- 티스토리챌린지
- 반복있음
- 경제학
- version 1
- 이원배치 분산분석
- html
- 산점도
- 가설검정
- 오블완
- 혼합효과모형
- r
- JavaScript
- 고정효과모형
- 정규분포
- 통계학
- 인공지능
- 두 평균의 비교
- 에세이
- 변량효과모형
- 데이터 과학
- 이항분포
- 분산분석
- 변동분해
- Today
- Total
목록표준편차 (2)
생각 작업실 The atelier of thinking
38일차 확률 곡선 위의 세상: 평균과 분산으로 그려내 정규분포 정규분포(Normal Distribution) 란 평균, 분산, 확률은 통계학의 기초이며, 이 3가지 개념만 확실히 이해한다면 통계학의 대부분을 이해할 수 있을 것이라 말했다. 이것을 증명할 첫번째 근거가 지금부터 소개할 정규분포다. 정규분포는 평균을 중심으로 좌우 대칭(Symmetric)인 종모양(bell-shaped)의 곡선으로 봉우리가 하나(Single-peaked)라는 특징을 가지고 있다. 정규분포는 평균과 분산, 확률의 개념이 조화를 이루어 정의할 수 있다. 정규분포는 대칭형 종 모양의 분포로, 중심 위치를 결정하는 값이 평균이다. 평균은 데이터의 중심으로 나타내며, 정규분포에서는 곧 데이터가 가장 밀집된 위치를 의미한다. 평균..
Chapter 18. 수치자료의 산포 1. 산포 (dispersion, 퍼짐) 산포란 자료들이 얼마나 퍼져 있는지를 나타내는 측도입니다. 중심위치와 더불어 일변량 수치형 자료요약의 한 축을 담당합니다. 데이터의 중앙을 나타내는 대표값과 더불어 데이터가 얼마나 퍼져 있는지 여부를 제시하는 값은 자료의 요약에 필수적인 요소입니다. 대표적으로 퍼짐을 나타내는 통계량은 다음과 같습니다. (1) 범위 : 최대값과 최소값 차이를 말합니다. (2) IQR : Q3 - Q1 , 여기서 Q1과 Q3는 1 사분위수(하위 50% 데이터의 중앙값)와 3 사분위수(상위 50% 데이터의 중앙값)를 말합니다. (3) 분산 : 각 데이터가 평균에서 떨어진 거리의 제곱에 대한 평균을 말합니다. (4) 표준편차 : 분산의 제곱근을 말합..