일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 에세이
- 글쓰기
- 두 평균의 비교
- 통계학
- 반복있음
- 경제학
- 이원배치 분산분석
- JavaScript
- 모평균에 대한 통계적추론
- 변동분해
- version 1
- 인공지능
- 회귀분석
- 티스토리챌린지
- 분산분석
- 정규분포
- 확률
- 고정효과모형
- 혼합효과모형
- css
- 산점도
- 이항분포
- 오블완
- 데이터 과학
- 변량효과모형
- r
- html
- 반복없음
- 가설검정
- 추정
- Today
- Total
목록두 평균의 비교 (3)
생각 작업실 The atelier of thinking
Chapter 77. R을 이용한 두 그룹의 평균 비교 두 그룹의 평균을 비교할 때 사용할 수 있는 R의 함수는 t.test( )입니다. 앞서 단일 모집단의 모평균을 추론할 때에도 t.test( )를 사용했었습니다. ▶ t.test( )t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, conf.level = 0.95, var.equal = FALSE ...)x : 일표본 또는 이표본 데이터 셋이거나 차이가 평가되는 대응표본 데이터 셋y : 비교할 이표본 데이터 셋. 일표본 또는 대응표본 t-검정의 경우에는 NULL로 설정alternative: 검정의 양측성(..
Chapter 75. 두 그룹간 평균 비교 - 독립표본 II 정규성 검정과 등분산성 검정은 모수적 통계 분석의 전제 조건을 확인하는 데 중요한 도구입니다. 이러한 검정을 통해 추론 결과의 타당성을 평가하고, 적절한 통계 분석 방법을 선택할 수 있습니다. 정규성 가정 확인은 shapiro-wilk 검정 등으로 확인할 수 있습니다. 등분산성 검정이란 두 그룹 간의 분산이 동일한지 여부를 확인하는 것입니다. 많은 통계적 분석 방법은 등분산 가정을 전제로 합니다. 등분산성이 충족되지 않을 경우에는 분석 결과가 왜곡될 수 있습니다. 따라서 등분산성 검정을 통해 두 그룹 간의 분산이 유사한지 여부를 확인하는 것이 필요합니다. 이번 회차에서는 분산이 다른 경우에 대해 알아보겠습니다. 1. 모집단 가정 두 모집단..
Chapter 74. 두 그룹간 평균 비교 - 독립표본 I 통계 분석에서의 가정은 분석 결과의 정확성과 신뢰성을 보장하기 위해 중요합니다. 그러나 실제 데이터는 가정을 항상 충족시키지 않을 수 있습니다. 따라서 가정이 충족되지 않았을 때는 대안적인 분석 방법이나 접근 방식을 고려하여 데이터에 더 적합한 모델을 선택하고 분석의 정확성을 높일 필요가 있습니다. 가정이 충족되지 않았을 때 대안적인 분석 방법을 찾는 것은 중요합니다. 이를 통해 통계 분석 결과의 신뢰성을 높일 수 있으며, 더 나은 결론을 도출할 수 있습니다. 이를 통해 데이터에 대한 보다 정확한 이해를 얻을 수 있으며, 이는 의사결정에 더 나은 지원을 제공할 수 있습니다. 따라서 통계 분석을 수행할 때는 가정을 검토하고, 가정이 충족되지 않았을..